

Hörn 17 24631 Langwedel

Tel.: 04329 / 220

Fax.: 04329 / 92913

info@schallschutznord.de

Schallgutachten

für ein geplantes Wohngebiet (B-Plan Nr. 35)

in Westerrönfeld

Teil 2: Schallimmissionen durch Gewerbelärm

Auftraggeber:

Gemeinde Westerrönfeld über Amt Jevenstedt Meiereistraße 5 24808 Jevenstedt

Bearbeiter:

Dipl.-Ing. G. Tietgen

Langwedel, den 23. Oktober 2019

AZ.: 901/19

DIESES GUTACHTEN UMFASST 13 SEITEN UND 8 BEILAGEN

Registergericht: Rendsburg HRB 1808 IBAN: DE44 4401 0046 0137 6914 62
Geschäftsführer: Gerhard Tietgen BIC: PBNKDEFF

AZ.: 901/19

Inhaltsverzeichnis

1	Zusammenfassung	4
2	Vorgang	4
3	Örtliche Verhältnisse	4
4	Zweck des Gutachtens	5
5	Grundlagen	5
6	Ermittlung der Schallimmissionen	6
6.1	Allgemeines	6
6.2	Wahl der Immissionsorte	7
6.3	Verwendete Grundlagen für die Berechnung	7
6.4	Schallemissionen wesentlicher Schallquellen während der Nacht	7
7	Beurteilung der Geräusche	11
7.1	Beurteilung der Geräusche für die lauteste Nachtstunde von 05:00 bis 06:00 Uhr	11
7.2	Beurteilung der Geräusche für die lauteste Nachtstunde von 22:00 bis 23:00 Uhr	11
7.3	Beurteilung der Geräusche für die Tageszeit von 06:00 bis 22:00 Uhr	12
8	Schallschutzmaßnahmen	12
8.1	Schallschutzmaßnahmen für den Zeitabschnitt von 05:00 bis 06:00 Uhr	12
8 2	Schallschutzmaßnahmen für den Zeitahschnitt von 22:00 his 23:00 Uhr	13

Verzeichnis der Beilagen

Beilage Nr. 1	Übersichtslageplan M ca. 1:10.000
Beilage Nr. 2	Lageplan mit Schallquellen und Immissionsorten M 1:2.000
Beilagen Nr. 3.1 - 3.7	Auszug aus den Berechnungen der Schallpegel (nachts)
Beilagen Nr. 4.1 - 4.2	Auszug aus den Berechnungen der Schallpegel (tags)
Beilage Nr. 5.1	Berechnung der Beurteilungspegel für die lauteste Nachtstunde (05:00 bis 06:00 Uhr)
Beilage Nr. 5.2	Berechnung der Beurteilungspegel
	für die lauteste Nachtstunde (22:00 bis 23:00 Uhr)
Beilage Nr. 6.1	40 dB(A)-Isophone für den Beurteilungszeitraum
	nachts (von 05:00 bis 06:00 Uhr)
Beilage Nr. 6.2	40 dB(A)-Isophone für den Beurteilungszeitraum
	nachts (von 22:00 bis 23:00 Uhr)
Beilage Nr. 7	55 dB(A)-Isophone tags für das gesamte Gewerbegebiet
	(einschließlich B-Plan 26)
Beilagen Nr. 8.1 - 8.2	Luftaufnahmen

Gewerbelärm

Sandeduz Sandeduz

AZ.: 901/19

1 Zusammenfassung

Untersuchungen im Rahmen dieses Gutachtens ergaben, dass durch Schallimmissionen vorhandenen und Gewerbegebietes der des geplanten Immissionsrichtwert der TA Lärm von tags 55 dB(A) im geplanten Wohngebiet unterschritten wird. Nachts wird der Immissionsrichtwert von 40 dB(A) überwiegenden Teil des geplanten Wohngebietes eingehalten oder unterschritten, im südöstlichen Teil allerdings überschritten.

Schallschutzmaßnahmen werden in Abschnitt 8 vorgeschlagen.

2 Vorgang

Die Gemeinde Westerrönfeld beauftragte uns, ein Schallgutachten für den Bebauungsplan Nr. 35 zu erstellen.

Das Gutachten besteht aus 2 Teilen:

In Teil 1 wurden Schallimmissionen durch Straßenverkehrslärm untersucht.

Dieser Teil 2 befasst sich mit Schallimmissionen durch Gewerbelärm, unter der Voraussetzung, dass der Betrieb der Firma Krabbenhöft an seinem jetzigen Standort verbleibt.

3 Örtliche Verhältnisse

Die örtlichen Verhältnisse sind aus den Lageplänen, *Beilagen Nr. 1 und 2*, sowie den Luftaufnahmen, *Beilagen Nr. 8.1 und 8.2* ersichtlich.

Nach Auskunft der Gemeinde Westerrönfeld soll der B-Plan Nr. 35 allgemeines Wohngebiet ausweisen.

4 Zweck des Gutachtens

Zweck des Gutachtens ist die Ermittlung der Schallimmissionen des östlich gelegenen vorhandenen Gewerbegebietes (B-Plan Nr. 16), des weiter südlich gelegenen geplanten Gewerbegebietes (B-Plan Nr. 26) und des vorhandenen Betriebs der Firma Krabbenhöft.

Nach Rücksprache mit dem Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR) in Flintbek sollen die Schallimmissionen nach der TA Lärm¹ (Technische Anleitung zum Schutz gegen Lärm) vom 26.08.1998 beurteilt und mit den Immissionsrichtwerten dieser Vorschrift verglichen werden.

Die Ergebnisse sollen als Isophonen im Bereich des geplanten Wohngebietes dargestellt werden.

5 Grundlagen

Grundlagen dieses Gutachtens sind folgende, der Firma Schallschutz Nord GmbH zur Verfügung gestellte Unterlagen:

- a) Übersichtslageplan im Maßstab 1:5000
- b) Katasterplan im Maßstab 1:1000
- c) Planungsunterlagen der Ingenieurgesellschaft Gosch-Schreyer-Partner
- d) Auskunft der Gemeinde Westerrönfeld über die Bauleitplanung der Gemeinde

-

¹ gemeinsames Ministerialblatt Nr. 26 vom 28.08.1998, S. 501 ff.

6 Ermittlung der Schallimmissionen

6.1 Allgemeines

6.1.1 Schallimmissionen tags

Nach Rücksprache mit dem LLUR in Flintbek sollen die Schallimmissionen (tags) des vorhandenen Gewerbegebietes und der Firma Krabbenhöft auf der Grundlage der DIN 18005 (Schallschutz im Städtebau, Teil 1: Grundlagen und Hinweise für die Planung) vom Juli 2002 ermittelt werden.

Dabei ist ein flächenbezogener Schallleistungspegel von tags 60 dB(A)/m² zugrunde zu legen.

Für das südlich gelegene geplante Gewerbegebiet sollen die im B-Plan festgesetzten Emissionskontingente von tags 65 dB(A) bzw. 60 dB(A) zugrunde gelegt werden.

6.1.2 Schallimmissionen nachts

Die Schallimmissionen nachts wurden nach Rücksprache mit dem LLUR auf der Grundlage der TA Lärm ermittelt.

Im Gegensatz zur DIN 18005 werden die Schallimmissionen nicht pauschal nach Grundstücksgröße ermittelt, sondern detailliert nach den tatsächlichen Gegebenheiten berechnet.

So werden z. B. Schallimmissionen von Betrieben, die in der Zeit von 22:00 bis 24:00 Uhr arbeiten, nicht mit Schallimmissionen von Betrieben, die in der Regel von z. B. 04:00 bis 06:00 Uhr arbeiten, addiert, da gemäß TA Lärm die lauteste Nachtstunde zugrunde zu legen ist.

Ebenso werden Betriebe, deren Schallimmissionen 6 dB(A) oder mehr unter dem Immissionsrichtwert der TA Lärm liegen, als nicht relevant berücksichtigt.

Grundlage für die zulässigen Schallemissionen während der Nacht sind die Schallimmissionen, die vor den nächstgelegenen vorhandenen Wohnhäusern in der Nachbarschaft zulässig sind (z. B. Gewerbegebiet nachts 50 dB(A), Mischgebiet nachts 45 dB(A) und allgemeines Wohngebiet nachts 40 dB(A)).

6.2 Wahl der Immissionsorte

Für die Ermittlung der Schallpegel wurden drei Immissionsorte im geplanten Wohngebiet ausgesucht.

Die Immissionsorte sind im Lageplan, Beilage Nr. 2 durch Punkte gekennzeichnet.

6.3 Verwendete Grundlagen für die Berechnung

Für die Berechnung der Schallimmissionen wurden folgende technische Regelwerke benutzt:

- a) DIN ISO 9613-2 (Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2) vom Oktober 1999
- b) VDI-Richtlinie 2714 (Schallausbreitung im Freien) vom Januar 1988
- c) VDI-Richtlinie 2720 Blatt 1 (Schallschutz durch Abschirmung im Freien) vom März 1997
- d) DIN 18005-1 Schallschutz im Städtebau Teil 1: Grundlagen und Hinweise für die Planung vom Juli 2002

6.4 Schallemissionen wesentlicher Schallquellen während der Nacht

6.4.1 Schallemissionen wesentlicher Schallquellen während der Nacht von 05:00 bis 06:00 Uhr

Für die Berechnung der Schallimmissionen für die lauteste Nachtstunde wurden alle Betriebe im Gewerbegebiet befragt, ob nachts lärmrelevante Tätigkeiten auf dem Betriebsgelände stattfinden. Die Befragung ergab, dass auf mehreren Betriebsgrundstücken lärmrelevante Tätigkeiten während der Nacht zu erwarten sind.

Die folgende Tabelle 1 zeigt die betroffenen Firmen und die errechneten Schallleistungen, die in der Zeit von 05:00 bis 06:00 Uhr eine Einhaltung der nächtlichen Immissionsrichtwerte vor den nächstgelegenen vorhandenen Wohnhäusern sicherstellen.

Tabelle 1: Betroffene Firmen im vorhandenen Gewerbegebiet mit der maximal zulässigen Schallleistung während der Nachtstunde von 05:00 bis 06:00 Uhr

Firma	berechn. Sch	allleistung
Jürgen Harder GmbH & Co. KG - Baustoffhandel	94,2	dB(A)
Claus Wieben Bauunternehmung GmbH & Co.KG	107,0	dB(A)
Rewe	98,8	dB(A)
TBN Transportbeton Nord GmbH & Co.KG	98,1	dB(A)
ALDI GmbH & Co. KG	97,5	dB(A)
PerCom Druck und Vertriebsgesellschaft mbH	102,0	dB(A)
Netto Marken Discount	93,5	dB(A)
Heinrich Brandt GmbH & Co KG	96,6	dB(A)
Bauhof	96,5	dB(A)

6.4.2 Schallemissionen wesentlicher Schallquellen in der Nacht von 22:00 bis 23:00 Uhr

In der Zeit von 22:00 bis 23:00 Uhr werden wesentliche Schallimmissionen von einem landtechnischen Lohnunternehmen (Firma Krabbenhöft) verursacht.

Nach Auskunft des Betriebsinhabers verfügt die Firma momentan über 17 landwirtschaftliche Schlepper, 5 Maishäcksler, 4 Mähdrescher, 1 Radlader und 1 Bagger.

Die reguläre Arbeitszeit ist werktags in der Zeit von 07:30 Uhr bis 16:30 Uhr.

Während der Erntezeit wird auch nach 22:00 Uhr gearbeitet. Dann sind ca. 20 Fahrzeuge im Einsatz.

Für die Berechnungen wurden die An- und Abfahrt sowie die Stellplätze von 11 landwirtschaftlichen Schleppern, 5 Maishäckslern und 4 Mähdreschern angenommen.

Den Berechnungen wurden folgende, durch Literaturangaben sowie Messung an vergleichbaren Anlagen ermittelte Schallleistungspegel zugrunde gelegt:

Tabelle 2: Zugrunde gelegte Schallleistungspegel (inkl. Impulszuschlag)

Schallquelle	Schallleistungspegel
landwirtschaftlicher Schlepper	75 dB(A) / 10 m *
Maishäcksler	77 dB(A) / 10 m *
Mähdrescher	77 dB(A) / 10 m *
1 Stellplatz Schlepper	83 dB(A) **
1 Stellplatz Maishäcksler	83 dB(A) **
1 Stellplatz Mähdrescher	83 dB(A) **
Maximalpegel	110 dB(A)

^{*} längenbezogener Schallleistungspegel für eine Bewegung pro Stunde

^{**} Mittelungspegel während der Einwirkzeit von 1 Stunde

Tabelle 3: Berechnete Schallpegel für die lauteste Nachtstunde (05:00 bis 06:00 Uhr) am Immissionsort Nr. 1 und Nr. 2 in dB(A)

Firma	berec Schallimn	hnete nissionen
	IO 1	IO 2
Jürgen Harder GmbH & Co. KG - Baustoffhandel	32,8*	33,5*
Claus Wieben Bauunternehmung GmbH & Co.KG	35,9	36,2
Rewe	23,5*	23,8*
TBN Transportbeton Nord GmbH & Co.KG	31,5*	32,0*
ALDI GmbH & Co. KG	27,0*	27,5*
PerCom Druck und Vertriebsgesellschaft mbH	32,8*	33,2*
Netto Marken Discount	23,3*	23,7*
Heinrich Brandt GmbH & Co KG	37,8	39,0
Bauhof	31,4*	32,0*

^{*}Schallimmissionen liegen mehr als 6 dB(A) unter dem Immissionsrichtwert von 40 dB(A) für allgemeines Wohngebiet und können gemäß TA Lärm als nicht relevant betrachtet werden.

Tabelle 4: Berechnete Schallpegel in dB(A) für die lauteste Nachtstunde (22:00 bis 23:00 Uhr) am Immissionsort Nr. 3 in dB(A)

Schallquellen	Immissionsort 3
1 Maishäcksler Ankunft	30,3
1 Stellplatz Maishäcksler	24,6
1 Mähdrescher Ankunft	29,2
1 Stellplatz Mähdrescher	24,0
1 landwirtschaftlicher Schlepper Ankunft	29,5
1 Stellplatz landwirtschaftlicher Schlepper	28,9
Maximalpegel	61

7 Beurteilung der Geräusche

7.1 Beurteilung der Geräusche für die lauteste Nachtstunde von 05:00 bis 06:00 Uhr

Die Ermittlung des Beurteilungspegels erfolgt auf der Grundlage der TA Lärm und den berechneten Schallimmissionen der Tabelle 3.

Die Berechnung geht aus der Beilage Nr. 5.1 hervor.

Das Ergebnis beträgt 40 dB(A) für den Immissionsort Nr.1 und 41 dB(A) für den Immissionsort Nr. 2.

Ergänzend wurde eine 40 dB(A)-Isophone für das geplante Wohngebiet gezeichnet. Sie ist in der *Beilage Nr. 6.1* dargestellt.

7.2 Beurteilung der Geräusche für die lauteste Nachtstunde von 22:00 bis 23:00 Uhr

Bei den Geräuschen für die lauteste Nachtstunde von 22:00 bis 23:00 Uhr handelt es sich um Schallimmissionen des landwirtschaftlichen Lohnunternehmens Krabbenhöft. Die Firma Krabbenhöft beabsichtigt in naher Zukunft einen Teil des Betriebes (Nachtbetrieb) in südliche Richtung zu verlagern.

Dieser Fall ist in einem separaten Gutachten bearbeitet worden. Da der genaue Zeitpunkt der Verlagerung noch nicht feststeht, werden in diesem Gutachten Schallimmissionen des z.Z. vorhandenen Betriebes der Firma Krabbenhöft untersucht (siehe Tabelle 4).

Die Berechnung des Beurteilungspegel geht aus der *Beilage Nr. 5.2* hervor. Die daraus resultierende Isophone zeigt die *Beilage Nr. 6.2*

Gewerbelärm

AZ.: 901/19

7.3 Beurteilung der Geräusche für die Tageszeit von 06:00 bis 22:00 Uhr

Die Berechnung der Beurteilungspegel erfolgte auf der Grundlage der DIN 18005 (Schallschutz im Städtebau), wie im Abschnitt 6.1.1 beschrieben.

Das Ergebnis beträgt 50 dB(A) für den Immissionsort Nr. 1.

Die 55 dB(A)-Isophone ist diesem Gutachten als Beilage Nr. 7 beigefügt.

Schallschutzmaßnahmen

8.1 Schallschutzmaßnahmen für den Zeitabschnitt von 05:00 bis 06:00 Uhr

Die Isophone in der Beilage Nr. 6.1 zeigt, dass im nordöstlichen Teil des geplanten Wohngebietes der Immissionsrichtwert von nachts 40 dB(A) teilweise überschritten wird. Die Gemeinde Westerrönfeld plante ursprünglich auf dieser Fläche Mischgebiet auszuweisen.

Alternativ können aber auch Schallschutzmaßnahmen an den Gebäuden durchgeführt werden. Gemäß TA Lärm befinden sich die maßgebenden Immissionsorte 0,5 m vor den geöffneten Fenstern von Aufenthaltsräumen.

Maßnahme Nr. 1 wäre eine Grundrissgestaltung, die sicherstellt, dass Fenster von Aufenthaltsräumen so angeordnet werden, dass keine Sichtverbindung zum Gewerbegebiet des Bebauungsplanes Nr. 16 besteht.

Gemäß TA Lärm mit Hinweis auf die DIN 4109, Ausgabe November 1989, sind Aufenthaltsräume:

Schlafzimmer

Wohnzimmer

Kinderzimmer

Keine Aufenthaltsräume:

Küchen*

Bäder

Flure und Hausarbeitsräume

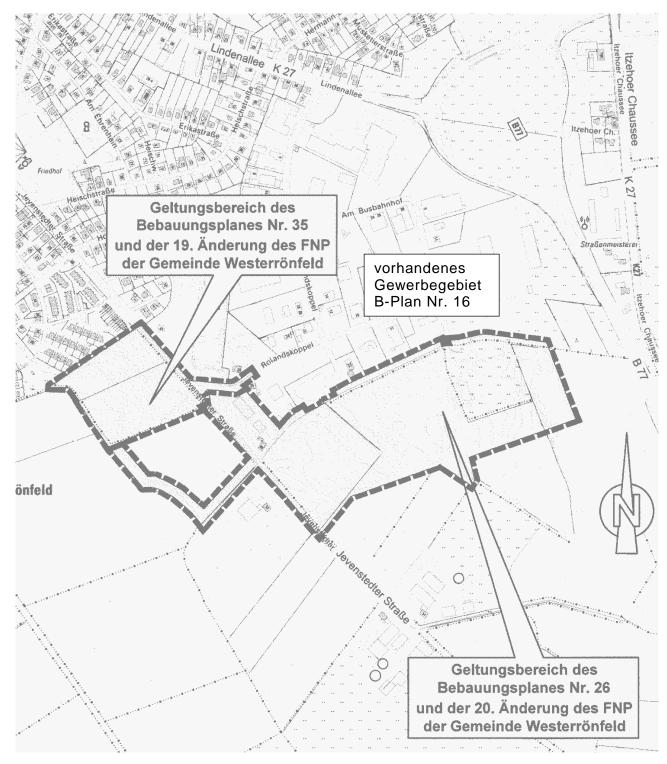
*keine Wohnküchen

Lässt sich diese Grundrissgestaltung nicht verwirklichen, können Aufenthaltsräume mit Fenstern, die eine Sichtverbindung zum Gewerbegebiet des Bebauungsplanes Nr. 16 ermöglichen, auch festverglaste Fenster erhalten. In diesem Fall sind schallgedämmte Lüftungseinrichtungen einzubauen.

8.2 Schallschutzmaßnahmen für den Zeitabschnitt von 22:00 bis 23:00 Uhr

Für diesen Zeitabschnitt sind Schallschutzmaßnahmen bei der Firma Krabbenhöft geplant. Nächtliche Aktivitäten sollen in südliche Richtung verlagert werden.

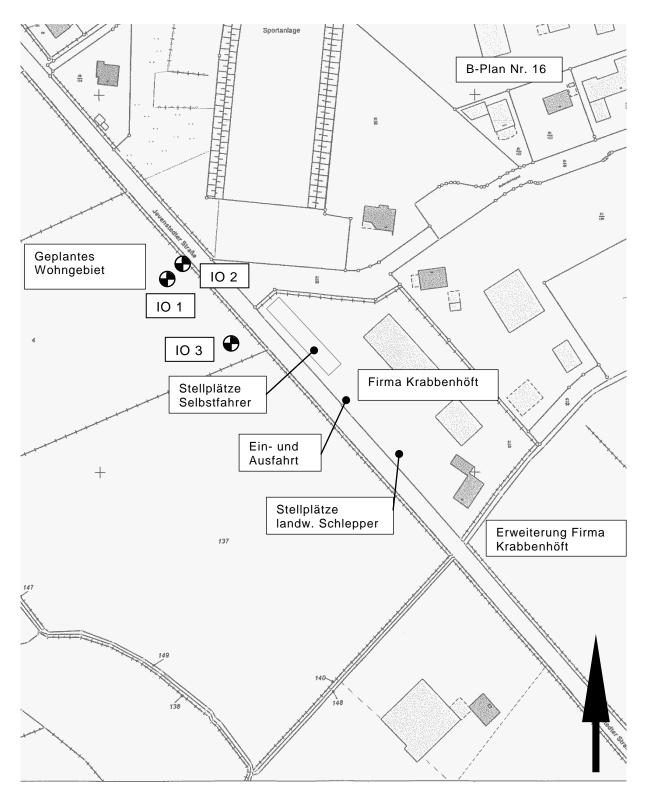
Darüber wurde ein separates Gutachten erstellt (AZ: 1004/18). Die vorgeschlagenen Maßnahmen können aber erst nach Rechtskraft des B-Planes Nr. 26 durchgeführt werden.


(Dipl.-Ing. G. Tietgen)

1. Virtym

Übersichtslageplan

M ca. 1:10.000


Sanleants

Sanleants

Gewerbelärm AZ.: 901/19

Lageplan mit Schallquellen und Immissionsorten

M 1:2.000

Auszug aus den Berechnungen der Schallpegel nachts

%0 3.0 32.8 se :	269	hq 1.5	0.0 63 11.4	0.0	0.0	hsa aa 0.0 0.0 500 1000 25.9 20.3	0.0	0.0	0.0	3 20	2.14	ds 59.6	db 4.4	La 0.0	De 0.0	0.0	Ls 32.8
3.0 32.8	269	1.5	0.0 63 11.4	0.0	0.0	0.0 0.0 500 1000	0.0	0.0 4000	8000	3 20	2.14	59.6	4.4	0.0	0.0	0.0	32.8
32.8 e :			63 11.4	125	250	500 1000	2000	4000	8000	1							
	81			Fa	Wie	eben					saves na	PARKET, W	· (*) (*)(*)(*)			N 966	*** *****
	22,	hq	hhq	hha		hsa aa						ds.	đb	Lt	De	Dr	Ls
3.0	699	1.5	6.0		4.3	4.3 658.6	40,2	0.0									
			63	125	250	500 100	2000	4000	2000	2	*****						
		. 0		Fa	Ret	we		n en	27 T.			7.5	00. 57 .79	श∓-कराना। -	- F	r 000	
Ro	80,	þq			11.00		βŞ						5777		()e	Dε	Ls
3.0	658	1.5		4.0	2.5	2.5 654.4	4.7	0.0	0.7	3 20	1.00	67.4	4.6	9.9	5.3		23.5
0	0 3.0 : 35.1 1@ : 80	0 3.0 699 : 35.9 : 8 : 5 8 3.0 658	0 3.0 699 1.5 : 35.9 : 5.0 Ko an' bq 8 3.0 658 1.5	63: 35.9 15.5 10: 5.0 8 3.0 658 1.5 4.0	0 3.0 699 1.5 6.0 6.0 63 125 15.5 19.7 Fax 1e : 5.0 8 3.0 658 1.5 4.0 4.0 63 125	63 128 256 63 128 256 15.5 19.7 34.6 Fa Res 1e : 5.0 80 sm' bq hbq hba hsq 8 3.0 658 1.5 4.0 4.0 2.5	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 63 125 250 500 1000 : 35.9 15.5 19.7 34.6 28.7 21.1 Fa Rewe 1e : 5.0 80 sm' bq hbq hba hsq hsa aa 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4	63 125 250 500 1000 2000 63 125 250 500 1000 2000 63 125 250 500 1000 2000 63 125 250 500 1000 2000 Fa Rewe 1e : 5.0 80 sm' bq hbq hha hsq hsa aa aq 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 63 125 250 500 1000 2000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 63 125 250 500 1000 2000 4000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 Fax Rewe 1e : 5.0 80 sm' bq hbq hba hsq hsa aa aq e 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 63 125 250 500 1000 2000 4000	0 3.0 639 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 63 125 250 500 1000 2000 4000 800 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.0 Fa. Rewe 1e : 5.0 80 sm' bq hbq hba hsq hsa aa aq e r 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 63 125 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fa Rewe 1e : 5.0 80 sm' bq hhq hha hsq hsa aa aq e r C1 C2 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 63 125 250 500 1000 2000 4000 8000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 1.00 63 125 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fa. Rewe 1e : 5.0 80 sm' bq hhq hha hsq hsa aa aq e r C1 C2 C3 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 1.00 63 125 250 500 1000 2000 4000 8000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 1.00 67.9 63 12\$ 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fa Rewe 1e : 5.0 80 sm' bq hbq hba hsq hsa aa aq e r C1 C2 C3 ds 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 1.00 67.4 63 125 250 500 1000 2000 4000 8000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 1.00 67.9 4.6 63 125 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fax Rewe 1e : 5.0 80 sn' bq hbq hha hsq hsa aa aq e r C1 C2 C3 ds db 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 1.00 67.4 4.6 63 125 250 500 1000 2000 4000 8000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 1.00 67.9 4.6 5.1 63 125 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fa Rewe 1e : 5.0 80 sm' bq hhq hha hsq hsa aa aq e r C1 C2 C3 ds db Lr 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 1.00 67.4 4.6 9.9 63 125 250 500 1000 2000 4000 8000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 1.00 67.9 4.6 5.1 0.4 63 125 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fa. Rewe 1e : 5.0 80 sm' bq hhq hha hsq hsa aa aq e r C1 C2 C3 ds db Lr De 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 1.00 67.4 4.6 9.9 5.3 63 125 250 500 1000 2000 4000 8000	0 3.0 699 1.5 6.0 6.0 4.3 4.3 658.6 40.2 0.0 0.2 3 20 1.00 67.9 4.6 5.1 0.4 0.0 63 125 250 500 1000 2000 4000 8000 15.5 19.7 34.6 28.7 21.8 13.3 3.1 -25.2 Fa. Rewe 1e : 5.0 80 sm' bq hhq hha hsq hsa aa aq e r C1 C2 C3 ds db Lr De Dr 8 3.0 658 1.5 4.0 4.0 2.5 2.5 654.4 4.7 0.0 0.7 3 20 1.00 67.4 4.6 9.9 5.3 0.0 63 125 250 500 1000 2000 4000 8000

						Fа	TB	N												
Aufpunkt - H Bezeichnung	Lip	Ko	gm:	þq	hhq	bha	hsq	hsa	aa	aq	ę	Ż	C1 C2	C3	ds	Ф	Lz	De	Dr	Ls
17 Teilfläche	98.1	3.0	439	1.5	4.0	4.0	2.3	2.3	411.6	27.9	0.0	0.1	3 20	1.00	83.8	4.5	5.0	8.5	0.0	31.5
energetische S					63	125	25	0 5	00 1000	2000	4000	800	}							
IP 1 Aufpunkt - H Bezeichnung	ĮW.	Ko	SIB1	. 0		Fa bha	bsq	hsa	<u>22</u>			2	C1 C	. C3	ds	ďà	Lz	De	Dr	Ls
18 Teilfläcke	97.5	3.0	414	1,5	4.0	4.0	2.5	2.5	409,1	5.9	0.0	0.5	3 2	1.00	63.3	4.5	9.5	5.0	0.0	27.0
energetische S					63	125	25	NO 5	00 1000	2000	4000	800	0							
IP 1							000													
Aufpunkt-H Bezeichnung	Lir	Ko	Sm'	.O		Fa hha		hsa	aa	ag	6	ž	C1 C	2 (3	ðs	đb	ĹZ	De	Dr	Ls
Bezeichmung 19 Teilfläche	Lav 102.0	Ko 3.0	50°	hq 1.5	hhq 0.0	bha 0.0	hsq 0.0	hsa 0.0	aa 0.0	0.0	0.0	0.0	3 2	0 1.00	66.6	4.6	0.0	0.0	0.0	32.8
Bezeichnung	Lw 102.6	3.0	603	hq 1.5	0.0 63	0.0	0.0	0.0	0.0 0.0	0.0 2000	0.0	0.0	3 2	0 1.00	66.6	4.6	0.0	0.0	0.0	32.8
Bezeichmung 19 Teilfläche energetische 1 IP 1 Autounkt-F	Lar 102.0 Sunne :	3.0 32.6	603	hq 1.5	0.0 63 11.9	0.0 12: 16.:	0.00 0.00 31	0.0 0.0 30 5	0.0 0.0 5.7 19.5	0.0 2000 5 12.1	0.0 4000 4.3	0.0 800 -19.	3 2) 1.00	66.6	4.6	0.0	0.0	6.0	32.8
Bezeichmung 19 Teilfläche energetische f	In 102.0 Summe :	3.0 32.8 %0	sn' 603	hq 1.5	63 11.9	0.0 12: 16.: Fa	0.00 0.00 1 2:31 New hsq	hsa 0.0 50 5 3 29 hsa 2.5	aa 0.0 1000 1000 100 100 100 100 100 100 1	0.0 2000 5 12.1 aq	0.0 4000 4.3 e	0.1	0 3 2 10 4 C1 C	2 C3	66.6 ds	4.6 db	0.0 9.3	0.0 De	0.0 0.0	32.8 Ls

IP 1						Fa	Bra	andt													
Aufpunkt- Bezeichnung			SM1	. 0 hq	hhq		hsq			ēΦ	ė	2	CI (2	C3	ds	đb	Le	De	Dr	ls
22 Teilfläche	96.6	3.0	204	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	10 1	.00	57.2	4.2	0.0	0.0	0.0	37.8
energetische	Summe ;	37.8	3			125 21.2	0	1	- 2000		4000 17.1	800 5.			****				******	*****	*****
IP 1	ADMINION ADMINISTRA					Baı	ihoi	E													
Aufpunkt- Beseichnung	Hoehe Lw		581 S	hq.	hhq	hha	hsq	hsa i	88	ag	e	Z	C1 (2	C3	ds	đb	Lz	De	Dr	Ls
23 Teilfläche	96.5	3.0	395	1.5		0.0		0.0	0.0	0.0	0.0	0.0	3 2	0 1	.00	62.9	4.5	0.0	0.0	0.0	31.4
energetische	Summe i	31.4		.,	63	125 14.8	250		1000	5.275	4000	8000 -10.3)		****	******			*****	*****	******

IP 3					1:	1 1	Mai	shå	icks	er	Ank	un	Ēt							
Aufpunkt-H	loeh	e :				79.117	are re			-	2001012									
Bezeichnung				hq	hhq	hha	ped	hsa	āā	āq	0	2	CI C	2 0	ds.	ф	L	De	ÐŢ	Lis
18 Maishácksler	77.0			1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	48.7	3.2	0.6	0.0	5.0	27.8
19 Maishācksler	77.0		84	1.0	4.8	4.8		3.2	71.7	12.5				0 1.00			11.4	8.1	0.0	18.8
mile, it less a setting in the setting at the set	77.0	1000	81		4.6	100			67.9	13.8				0 2.00			11.1	7.8		19.4
									61.0								11.2	8.1	0.0	20.1
21 Maishäcksler 22 Maishäcksler	77.0	3.0	67	1.0	4.8	4.8	3.1	1.1	55.4	12.1	0.0						11.5	8.6	0.0	20.7
23 Maishācksler	77.0	3.0	60	1,0	4.8	4.8	3.3	3.3	53.2	7.5	0.0	0.9			46.5			10.7	0.0	19.9
energetische					63	125	25	0 5	00 1000	2000	4000	8000								
energetistne	oume :	20.1			45.5	19.3	L	9 44	1 24	46.3	11.9	-4.5								
Westerröni	feld	В-	Pla	an .	35															
IP 3					2 -	+ 4	2+e	11-	lat:	Ma	ieh	ă.e.	ke1	or						
Aufpunkt-H	Innh	o -				4 6	ore.	447	/.au	6,100	4011	a.C.	ne.i	-GL						
Bezeichnung	toen tu	Ko.	an'	ho	hhq	hha	hsq	hta	33	aq	e	1	010	2 (3	ds	db	Lt	De	Dr	Le
sererconning		1000																		
17 Stellpl. Häcksl	e 83.0	3.0	58	1.0	4.8															
17 Stellpl. Häcksl	e 83.0	3.0	58	1.0	4.8	4.8	3.4	3.4	52.5	€.2 2000	0.0 4000	8000	3.2							
17 Stellpl. Häcksl	e 83.0	3.0	58	1.0	4.8	4.8	3.4	3.4	52.5	€.2 2000	0.0 4000	8000	3.2							
17 Stellpl. Häcksl energetische	e 83.0 Summe :	3.0	58	1.0	4.8 63 16.5	4.8	3.4	3.4	52.5	€.2 2000	0.0 4000	8000	3.2							
17 Stellpl. Häcksl energetische Westerröns	e 83.0 Summe :	3.0	58 P1.6	1.0	4.8 63 16.5	4.8 125 18.6	3.4 25 17.	3.4 0 5 0 17	52.5 00 1000 .1 16.9	€,2 2000 12.1	0.0 4000 3.6	8000 -4.4	3 2							
17 Stellpl. Häcksl energetische Westerröns	e 83.0 Summe :	3.0 24.6 B-	58 Pla	1.0	4.8 63 16.5	4.8 125 18.6	3.4 25 17.	3.4 0 5 0 17	52.5	€,2 2000 12.1	0.0 4000 3.6	8000 -4.4	3 2							
17 Stellpl. Bäcksl energetische Westerröns IP 3 Aufpunkt-1 Bezeichnung	e 83.0 Sume : Eeld Hoeh-	3.0 24.6 B-	58 Pla	1.0 an	4.8 63 16.5 3.5 3.5	1.8 18.6 1 R	3.4 25 17. 48.h	3.4 0 50 0 17 dre	52.5 00 1000 .1 16.9	6.2 2000 12.1	0.0 4000 3.6 n.ku	1.1 800 -4.0	3 2) (2 (3	46.2 ds	2.5 db	15.0	12.5 De	0.0 Dr	24.6
17 Stellpl. Hicksl energetische Westerröns IP 3 Aufpunkt-F	e 83.0 Sume : Eeld Hoeh-	3.0 24.6 B-	58 Pla	1.0 a.n.	4.8 63 16.5 3.5 3.5	1.25 18.6	3.4 25 17. 48h	3.4 0 50 0 17 dre	52.5 00 1000 .1 16.9 esche	6.2 2000 12.1	0.0 4600 3.6 n.ku	1.1 8000 -4.6	3 2 1 t	2 (3	46.2 ds	2.5 db	15.0	12.5 De	0.0 Dr	24.6
17 Stellpl. Bäcksl spergetische Westerröns IP 3 Aufpunkt-1 Bezeichnung	e 83.0 Sume : Eeld Hoeh- Lw	3.0 24.6 1B- E : Ko	58 Pla 58 77	1.0 am bq	4.8 63 16.5 3.5 3.5 bhq	1.8 18.6 1. It hha	3.4 25 17. 48h	3.4 0 50 0 17 dre	57.5 00 1000 .1 16.9 esche	6.2 2000 12.1 er A	0.0 4600 3.6 nku e	1.1 8000 -4.4	32 0 1	0 1.00	46.2 ds	db 3.2	15.0 La	De 0.0	0.0 Dr	24.6 Ls
spergetische Westerröns IP 3 Aufpunkt-F Bezeichnung 9 Mähdrescher 10 Mähdrescher 11 Mähdrescher	e 83.0 Sume : Eeld Hoeh- Sw 77.0 77.0	3.0 24.6 B- 15 Ko 3.0 3.0 3.0 3.0 3.0	58 Pla 58 58'	1.0 axn bq 1.0 1.0	4.8 63 16.5 3.5 3.5 hhq 0.0 4.8	1.8 18.6 1.8 1.8 1.8 1.8 1.8	3.4 25 17. 68h hsq 0.0 3.2	3.4 0 50 0 17 dre	52.5 00 1000 .1 16.9 esche	6.2 2000 12.1 er A	0.0 4000 3.6 20 cm lcu e 0.0 0.0	1.1 8000 -4.4	3 2 2 CI	0 1.00 2 C3	ds 48.7	db 3.2 3.3	15.0 Ea 0.0	De 0.0	Dr 0.0 0.0	24.6 Ls 27.6
17 Stellpl. Bäcksl energetische Westerröns IP 3 Aufpunkt-1 Bezeichnung	e 83.0 Sume : Eeld Hoeh- Sw 77.0 77.0	3.0 24.6 B- 15 Ko 3.0 3.0 3.0 3.0 3.0	58 Pla 58 58'	1.0 am	4.8 63 16.5 3.5 3.5 3.5 0.0 4.8 4.8	1.8 1.8 1.8 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	3.4 25 17. 48h hsq 0.0 3.2 3.1	3.4 0 50 0 17 dre	52.5 00 1000 .1 16.9 esche 88 0.0 71.2 68.3	6.2 2000 12.1 er A aq 0.0 12.3	0.0 4000 3.6 n.ku e 0.0 0.0 0.0	1.1 8000 -4.4 0.0 0.5 0.4	3 2 2 CI	0 1.00 2 C3 0 1.00 0 1.00	ds 48.7 49.4 49.2	db 3.2 3.3 3.3	15.0 0.0 14.1	De 0.0 10.8 10.5	Dr 0.0 0.0 0.0 0.0	18 27.6 16.0
17 Stellpl. Bicksl snergetische Westerröns IP 3 Aufpunkt-Bezeichnung § Mähdrescher 10 Rähdrescher 11 Mihdrescher	e 83.0 Summe : Eeld foeh- lw 77.0 77.0 77.0 77.0	3.0 24.6 B- Ko 3.0 3.0 3.0 3.0	58 Pla 58 58 77 83 81	1.00 bq 1.00 1.00 1.00	4.8 63 16.5 3.5 3.5 3.5 0.0 4.8 4.8	1.25 18.6 1. It hha 0.0 4.8 4.8 4.8	3.4 25 17. 48h hsq 0.0 3.2 3.1 3.1	3.4 0 50 0 17 direction 3.2 3.1 3.1	52.5 00 1000 .1 16.9 esche 88 0.0 71.2 68.3	6.2 2000 12.1 er A 49 0.0 12.3 13.2	0.0 4900 3.6 nku e 0.0 0.0 0.0	1.1 8000 -4.4 0.5 0.4 0.4	3 2 Ci	0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00	ds 48.7 49.4 49.2	2.5 db 3.2 3.3 3.3 3.1	15.8 0.0 14.1 13.8 13.9	De 0.0 10.8 10.5 10.8	Dr 0.0 0.0 0.0 0.0	24.6 27.6 26.0 16.5 17.3

Westerrönfeld B-Plan 35 4: 1 Stellplatz Mähdrescher Aufpunkt-Hoehe: 5.0 Bereichnung Lw Ko sm' hq hhq hha haq hsa aa aq e z C1 C2 C3 ds db Lz De Dr La 16 Stellpl, Mähdresc 83.0 3.0 60 1.0 4.8 4.8 3.4 3.4 55.3 5.9 0.0 1.2 3 20 1.00 46.6 2.6 15.2 12.6 0.0 24.0 63 125 250 500 1000 2000 4000 8000 energetische Summe : 24.0 15.9 18.1 16.4 16.4 16.3 11.8 3.2 -4.9 Westerrönfeld B-Plan 35 5: 1 landw.Schlepper Ankunft Aufpunkt-Hoehe: 5.0 Bezeichnung lw Ko sm' hq hhq hha hsa as aq e z Cl C2 C3 ds db Lz De Dr Ls 1 landw. Schlepper 75.0 3.0 122 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 20 1.00 52.7 3.8 0.0 0.0 0.0 20.7 2 landw. Schlepper 75.0 3.0 125 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3201.00 52.9 3.9 0.0 0.0 0.0 20.5 3 landw. Schlepper 75.0 3.0 122 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1201.00 52.7 3.8 0.0 0.0 0.0 20.7 4 landw. Schlepper 75.0 3.0 113 1.0 4.8 4.8 2.2 2.2 68.2 45.4 0.0 0.1 3201.00 52.1 3.8 7.2 3.4 0.0 18.0 5 landw. Schlepper 75.0 3.0 105 1.0 4.8 4.8 2.4 2.4 69.3 36.3 0.0 0.1 3201.00 51.5 3.7 8.2 4.5 0.0 17.8 6 landw. Schlepper 75.0 3.0 95 1.0 4.8 4.8 2.7 2.7 71.0 24.7 0.0 0.2 3 20 1.00 50.6 3.5 9.9 6.4 0.0 16.9 7 landw. Schlepper 75.0 3.0 85 1.0 4.8 4.8 3.1 3.1 70.3 14.9 0.0 0.4 3 20 1.00 49.6 3.3 12.3 8.9 0.0 15.7 8 landw. Schlepper 75.0 3.0 81 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 20 1.00 49.1 3.3 0.0 0.0 0.0 25.1 63 125 250 500 1000 2000 4000 8000 10,6 14,9 19,4 23,9 24,5 22,4 16,5 7,7 energetische Summe : 29.5 Westerrönfeld B-Plan 35 6: 1 Stellpl. landw. Schl. Aufpunkt-Hoehe : 5.0 Bereichnung Lw Ko mn' hg hha had had ha aa ag e z Cl C2 C3 ds db Lz De Dr Ls 15 Stellp.Schlepper 83.0 3.0 122 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 20 1.00 52.7 3.8 0.0 0.0 0.0 28.9 63 125 250 500 1000 2000 4000 8000 energetische Summe : 28.9 14.5 18.6 19.3 22.0 24.5 21.2 11.9 1.9

AZ.:901/19

IP 3					7:	Max	cim	alp	egel												
Nufpunkt- Beseichnung	Hoehe lw	B :	118,	.0 hq	ìòq	bha	ped	hsa	88	aq.	e	I	a.	72	3	đε	ф	la	(le	Dr	la
9 Måhårescher	77.0	3.0	77	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3	20 1	.00	48.7	3.2	0.0	0.0	0.0	27.6
10 Mähdrescher	77.0	3.0	83	1.0	4.8	4.8	3.2	3.2	71.2	12.3	0.0	0.5	3	20 1	.00	45.4	3.3	14.1	10.8	0.0	16.0
11 Mähdrescher	77.0	3.0	81	1.0	4.8	4.8	3.1	1.1	68.3	11.2	0.0	0.4	3	20 1	.00	49.2	3.3	13.8	10.5	0.0	16.5
12 Måhdrescher	77.0	3.0	73	1.0	4.8	4.8	3.1	3.1	61.0	12.9	0.0	0.4	3	20.1	.00	48.3	3.1	11.9	10.8	0.0	17.3
13 Mähdrescher	77.0	3.0	67	1.0	4.8	4.8	3.0	3.0	54.1	12.9	0.0	0.4	3	20 1	.00	47.5	2.9	13.8	11.0	0.0	18.3
14 Mähdrescher	77.0	3.0	58	1.0	4.8	4.3	3.4	3.4	53.3	6.0	0.0	1.2	3	20 1	.00	46.3	2.5	17.5	14.9	0.0	15.9

AZ.:901/19

Bedeutung und Einheit der verwendeten Formelzeichen

Formelzeichen	Bedeutung	Einheit
Lw	Schallleistungspegel	dB
Ko	Raumwinkelmaß	dB
sm'	Abstand Schallquelle – Aufpunkt am Immissionsort	m
hq	Höhe der Schallquelle über Grund	m
hhq	Schirmhöhe über Grund bei Mehrfachbeugung auf der Seite der Schallquelle	m
hha	Schirmhöhe über Grund bei Mehrfachbeugung auf der Seite des Aufpunktes am Immissionsort	m
hsq	wirksame Schirmhöhe bei Mehrfachbeugung auf der Seite der Schallquelle	m
hsa	wirksame Schirmhöhe bei Mehrfachbeugung auf der Seite des Aufpunktes am Immissionsort	m
aa	Abstand zwischen Aufpunkt am Immissionsort und betrachteter Schirmkante	m
aq	Abstand zwischen Schallquelle und betrachteter Schirmkante	m
е	Abstand zwischen den Schnittpunkten beider Beugungskanten eines dicken Schirms oder von zwei parallelen, dünnen Schirmen mit dem Schallstrahl	m
Z	Schirmwert	m
C1	Größe zur Kennzeichnung der Schirmwirkung in der Sichtlinie über die Schirmkante	-
C2	Proportionalitätsfaktor des Schirmwertes z	-
C3	Faktor zur Berücksichtigung von Mehrfachbeugung	-
ds	Abstandsmaß	dB
db	Boden- und Meteorologiedämpfungsmaß ohne Schirm	dB
Lz	Abschirmmaß eines Schallschirmes	dB
De	Einfügungsdämpfungsmaß der Schirmkante	dB
Dr	Schallpegelerhöhung durch Mehrfachreflexion	dB
Ls	Gesamtschalldruckpegel am Aufpunkt	dB

Auszug aus den Berechnungen der Schallpegel tags

Bezeichnung	Lw	To.	507	ΜŢ	hhq	hha	hsq	hsa	88	aq.	e	I	01 0	2 (3	đs	đb	Lt	De	Dr	Ls
1 Teilfläche	85.6	3.0	100	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32	0 1.00	51.0	3.5	0.0	0.0	0.0	33.9
2 Teilfläche	87.6	3.0	119	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	52.5	3.7	0.0	0.0	0.0	34.1
3 Teilfläche	90.0	3.0	145	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	54.2	3.9	0.0	0.0	0.0	34.6
4 Teilfläche	90.5	3.0	173	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	55.8	4.1	0.0	0.0	0.0	33.3
5 Teilfläche	92.5	3.0	219	1.5	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	3.2	0 1.00	57.8	4.3	0.0	0.0	0.6	33.0
6 Teilfläche	92.4	3.0	227	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	58.1	4.3	0.0	0.0	0.0	32.6
7 Teilfläche	90.8	3.0	192	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32	0 1.00	56.6	4.2	0.0	0.0	0.0	32.6
8 Teilfläche	91.3	3.0	148	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	54.4	4.0	0.0	0.0	0.0	35.6
9 Teilfläche	95,6	3.0	237	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32	0 1.00	58.5	4.3	0.0	0.0	0.0	35.3
10 Teilfläche	94.6	3.0	198	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	56.9	4.2	0.0	0.0	0.0	36.1
11 Teilfläche	97.1	3.0	291	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	60.3	4.4	0.0	0.0	0.0	34.9
12 Teilfläche	96.4	3.0	267	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	59.5	4.4	0.0	0.0	0.0	35.1
13 Teilfläche	98.9	3.0	379	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	0.1.00	62.6	4.5	0.0	0.0	0.0	34.1
14 Teilfläche	100.0	3.0	491	1.5	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	64.8	4.6	0.0	0.0	0.0	32.8
15 Teilfläche	106.0	3.0	683	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	0 1.00	67.7	4.6	0.0	0.0	0.0	35.6
16 Teilfläche	100.4	3.0	492	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	64.8	4.6	0.0	0.0	0.0	33.2
17 Teilfläche	100.4	3.0	390	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	62.8	4.5	0.0	0.0	0.0	35.4
18 Teilfläche	100.8	3.0	413	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	63.3	4.5	0.0	0.0	0.0	34.5
19 Teilfläche	100.3	3.0	511	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	1.00	65.2	4.5	0.0	0.0	0.0	32.7
20 Teilfläche	100.9	3.0	256	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0 1.00	59.2	4.3	0.0	0.0	0.0	39.9
21 Teilfläche	101.5	3.0	288	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	1.00	60.2	4.4	0.0	0.0	0.0	39.4
22 Teilfläche	96.3	3.0	173	1.5	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	3 2	1.00	55.8	4.1	0.0	0.0	0.0	39.1
23 Teilfläche	92.2	3.0	143	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	1.00	54.1	3.9	0.0	0.0	0.0	36.9
24 Teilfläche	87.8	3.0	145	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	1.00	54.2	3.9	0.0	0.0	0.0	32.3
25 Teilfläche	99.0	3.0	370	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	1.00	62.4	4.5	0.0	0.0	0.0	34.5
26 Teilfläche	97.2	3.0	446	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	1.00	64.0	4.5	0.0	0.0	0.0	30.9
27 Teilfläche	97.4	3.0	534	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1.00	65.5	4.6	0.0	0.0	0.0	29.4
28 Teilfläche	106.3	3.0	552	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	1.00	65.8	4.6	0.0	0.0		38.0
29 Teilfläche	101.2	3.0	635	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 2	1.00	67.0	4.6	0.0	0.0		31.5
30 Teilfläche	95.4	3.0	604	1.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 20			4.6	0.0	0.0		26.2

63 125 250 500 1000 2000 4000 8000 energetische Summe : 49.9 28.6 33.3 48.3 43.0 37.4 31.3 28.1 17.0

AZ.:901/19

Bedeutung und Einheit der verwendeten Formelzeichen

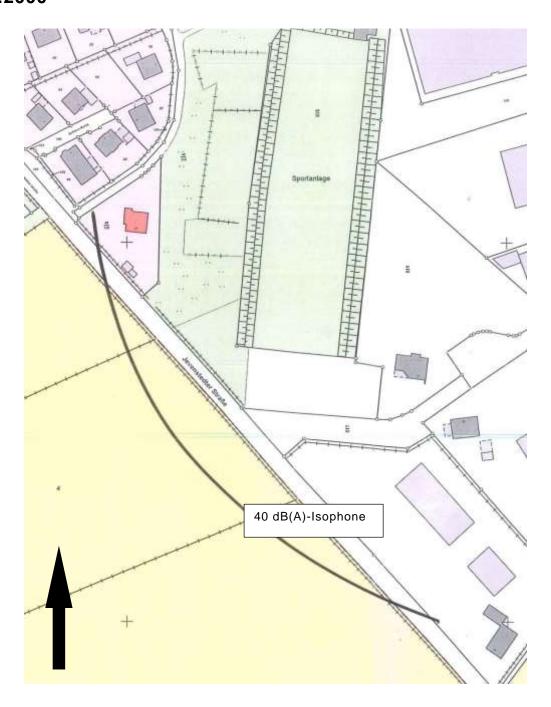
Formelzeichen	Bedeutung	Einheit
Lw	Schallleistungspegel	dB
Ko	Raumwinkelmaß	dB
sm'	Abstand Schallquelle – Aufpunkt am Immissionsort	m
hq	Höhe der Schallquelle über Grund	m
hhq	Schirmhöhe über Grund bei Mehrfachbeugung auf der Seite der Schallquelle	m
hha	Schirmhöhe über Grund bei Mehrfachbeugung auf der Seite des Aufpunktes am Immissionsort	m
hsq	wirksame Schirmhöhe bei Mehrfachbeugung auf der Seite der Schallquelle	m
hsa	wirksame Schirmhöhe bei Mehrfachbeugung auf der Seite des Aufpunktes am Immissionsort	m
aa	Abstand zwischen Aufpunkt am Immissionsort und betrachteter Schirmkante	m
aq	Abstand zwischen Schallquelle und betrachteter Schirmkante	m
е	Abstand zwischen den Schnittpunkten beider Beugungskanten eines dicken Schirms oder von zwei parallelen, dünnen Schirmen mit dem Schallstrahl	m
Z	Schirmwert	m
C1	Größe zur Kennzeichnung der Schirmwirkung in der Sichtlinie über die Schirmkante	-
C2	Proportionalitätsfaktor des Schirmwertes z	-
C3	Faktor zur Berücksichtigung von Mehrfachbeugung	-
ds	Abstandsmaß	dB
db	Boden- und Meteorologiedämpfungsmaß ohne Schirm	dB
Lz	Abschirmmaß eines Schallschirmes	dB
De	Einfügungsdämpfungsmaß der Schirmkante	dB
Dr	Schallpegelerhöhung durch Mehrfachreflexion	dB
Ls	Gesamtschalldruckpegel am Aufpunkt	dB

Berechnung des Beurteilungspegels für den Immissionsort Nr. 1 für die lauteste Nachtstunde von 05:00 bis 06:00 Uhr

Uhrzeit	Geräuschquelle	Schallpegel am Immissions- ort	Einwirkdauer		10*log t/1h	Zuschlag für Einzeltöne	Immissions- anteil für die lauteste Nachtstunde
		in dB(A)	h	min	in dB(A)	in dB(A)	in dB(A)
05:00	Firma Wieben	35,9	1		0,0	0,0	35,9
- 06:00 Uhr	Firma Brandt	37,8	1		0,0	0,0	37,8
energetische Summe							40,0
Beurteilungspegel IO1 in dB(A)							40

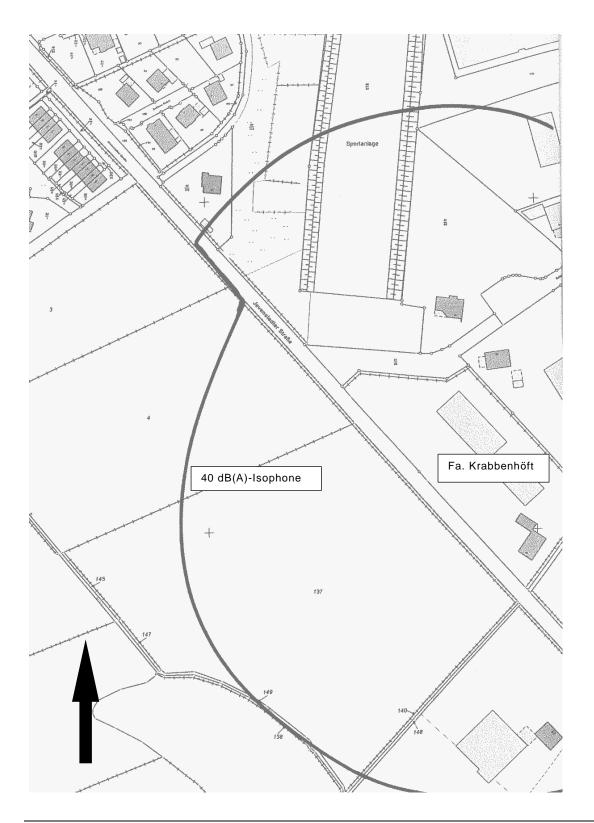
Berechnung des Beurteilungspegels für den Immissionsort Nr. 2 für die lauteste Nachtstunde von 05:00 bis 06:00 Uhr

Uhrzeit	Geräuschquelle	Schallpegel am Immissions- ort	Einwirkdauer		10*log t/1h	Zuschlag für Einzeltöne	Immissions- anteil für die lauteste Nachtstunde
		in dB(A)	h	min	in dB(A)	in dB(A)	in dB(A)
05:00	Firma Wieben	36,2	1		0,0	0,0	36,2
06:00 Uhr	Firma Brandt	39,0	1		0,0	0,0	39,0
energetische Summe							40,8
Beurteilungspegel IO2 in dB(A)							41

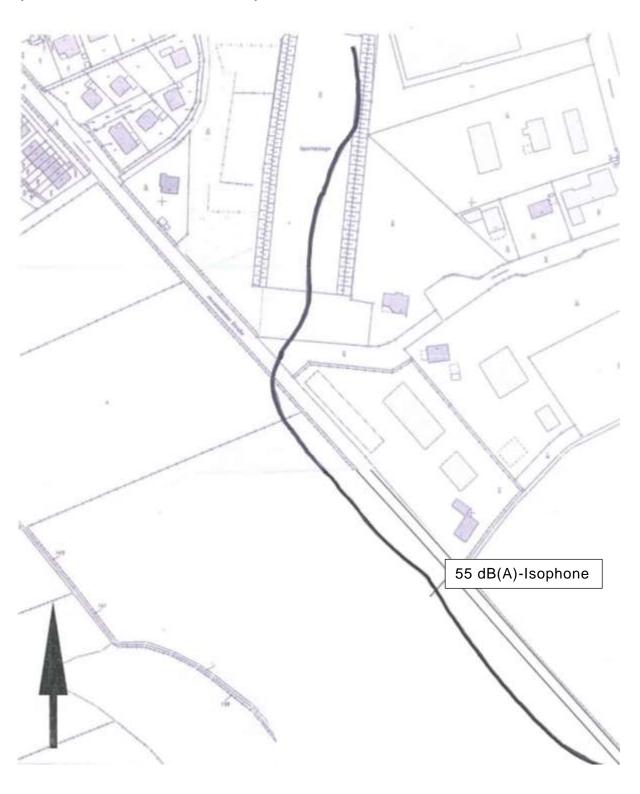


Berechnung des Beurteilungspegels für den Immissionsort Nr. 3 für die lauteste Nachtstunde von 22:00 bis 23:00 Uhr

Uhrzeit	Geräuschquelle	Schallpegel am Immissions- ort	Einwirk	dauer	10*log t/1h	Zuschlag für Einzeltöne	Immissions- anteil für die lauteste Nachtstunde
		in dB(A)	h	min	in dB(A)	in dB(A)	in dB(A)
	Ankunft 5 Maishäcksler	30,3	5		7,0		37,3
	5 Stellplätze	24,6	5		7,0		31,6
22:00 -	Ankunft 4 Mähdrescher	29,2	4		6,0		35,2
23:00 Uhr	4 Stellplätze	24,0	4		6,0		30,0
	Ankunft 11 Schlepper	29,5	11		10,4		39,9
	11 Stellplätze	28,9	11		10,4		39,3
					energetisc	he Summe	44,7
Beurteilungspegel IO 3 in dB(A)							45



40 dB(A)-Isophone für den Beurteilungszeitraum lauteste Nachtstunde von 05.00 bis 06.00 Uhr M 1:2000



40 dB(A)-Isophone für den Beurteilungszeitraum lauteste Nachtstunde von 22.00 bis 23.00 Uhr

55 dB(A)-Isophone tags für das gesamte Gewerbegebiet (einschließlich B-Plan 26)

AZ.: 901/19

Luftaufnahme

Foto: Schallschutz Nord GmbH

AZ.: 901/19

Luftaufnahme der Firma Krabbenhöft

Foto: Schallschutz Nord GmbH